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Abstract
We present ARCTraj, a dataset and methodological framework for
modeling human reasoning through complex visual tasks in the
Abstraction and Reasoning Corpus (ARC). While ARC has inspired
extensive research on abstract reasoning, most existing approaches
rely on static input-output supervision, which limits insight into
how reasoning unfolds over time. ARCTraj addresses this gap by
recording temporally ordered, object-level actions that capture how
humans iteratively transform inputs into outputs, revealing in-
termediate reasoning steps that conventional datasets overlook.
Collected via the O2ARC web interface, it contains around 10,000
trajectories annotated with task identifiers, timestamps, and suc-
cess labels across 400 training tasks from the ARC-AGI-1 bench-
mark. It further defines a unified reasoning pipeline encompassing
data collection, action abstraction, Markov decision process (MDP)
formulation, and downstream learning, enabling integration with
reinforcement learning, generative modeling, and sequence mod-
eling methods such as PPO, World Models, GFlowNets, Diffusion
agents, and Decision Transformers. Analyses of spatial selection,
color attribution, and strategic convergence highlight the structure
and diversity of human reasoning. Together, these contributions
position ARCTraj as a structured and interpretable foundation for
studying human-like reasoning, advancing explainability, align-
ment, and generalizable intelligence.
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1 Introduction
Understanding and modeling how humans reason and solve prob-
lems, rather than reproducing only their final answers, remains a
central challenge in AI [10]. Such problem-solving involves concep-
tual abstraction, attention shifts, and the use of flexible strategies,
yet these abilities remain difficult for machines to emulate [14, 29].
The Abstraction and Reasoning Corpus (ARC) [8] was introduced
to benchmark these capabilities through grid-based tasks where
solvers must infer rules from a small set of input-output examples.

While the benchmark itself is well designed, most ARC research
has focused on reproducing outputs rather thanmodeling reasoning.
Early program synthesis approaches [3, 11, 26, 30, 34] struggled to
infer solution strategies because the benchmarks provide limited
guidance for program construction. To address this, several studies
have attempted to extract auxiliary cues from input grids or from
intermediate program execution results; however, these approaches
have remained task-specific and brittle. More recently, LLM-based
methods [23, 28, 33] have leveraged prior knowledge to generate
diverse candidate programs, showing improved flexibility but still
facing the fundamental challenge of an enormous search space
without explicit reasoning guidance.

In parallel, test-time training approaches [2, 12, 24] aim to en-
able on-the-fly adaptation during inference; however, their learn-
ing signals still rely on static supervision rather than the evolving
structure of reasoning. As a result, existing ARC approaches (e.g.,
program synthesis, neuro-symbolic reasoning, and test-time learn-
ing) remain limited by their reliance on static supervision and their
inability to capture the unfolding of human reasoning over time.

To address this limitation, we present ARCTraj, a large-scale
dataset of human reasoning trajectories collected while solving
ARC tasks. Each trajectory captures a temporally ordered sequence
of object-level actions (i.e., moving, rotating, and flipping objects)
that transform an input grid into its correct output. By capturing
these multi-step trajectories, ARCTraj provides explicit reasoning
supervision that connects human perception, abstraction, and strat-
egy formation, offering a structured alternative to unconstrained
program search. These logs were collected via the O2ARCweb inter-
face [31], which is designed to support natural human interaction
with ARC problems. Each trajectory is annotated with metadata,
including timestamps, task identifiers, and success labels, enabling
both learning and analysis.

Compared to existing human ARC datasets, ARCTraj offers sev-
eral advantages. Whereas H-ARC [22] captures pixel-level edit logs
and the ARC-Interactive-History-Dataset [32] records low-level cell
and operation sequences, ARCTraj provides object-centric actions
with consistent formatting and semantic structure across all 400
ARC-AGI-1 training tasks. This object-level abstraction reflects how
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Figure 1: Overview of the ARCTraj data collection process. Users solve ARC tasks through the O2ARC platform by interacting
with grid-based objects. Their actions are recorded step-by-step to form semantically rich, temporally ordered trajectories.

humans group meaningful visual units and apply conceptual trans-
formations rather than pixel-level edits. Such abstraction preserves
strategic intent and eliminates redundant operations, resulting in
trajectories that more accurately represent human reasoning.

ARCTraj also defines a comprehensive reasoning pipeline that
spans data collection, action abstraction, MDP formulation, and
downstream learning. This unified framework integrates naturally
with reinforcement learning, generative modeling, and sequential
reasoning methods that require temporally structured supervision.
Thus, ARCTraj serves not only as a dataset but also as a foundation
for studying how reasoning behaviors can emerge from human
trajectories.

Ultimately, ARCTraj shifts the focus of ARC research from re-
producing outputs to modeling reasoning itself. By learning from
human trajectories, models can acquire structured strategies that
reflect System 2 thinking [17] and generalize across domains, such
as program synthesis, robotics, and data transformation. We expect
ARCTraj to promote research on transferable reasoning strategies
beyond training tasks.

In this paper, we first introduce previous research (Sec. 2) and
present the motivation and design of ARCTraj (Sec. 3). We then
formalize how ARC solvers learn from human trajectories through
a unified reasoning framework (Sec. 4). Next, we present auxiliary
knowledge extracted from ARCTraj, including selection, color, and
intention cues (Sec. 5). Finally, we demonstrate their applications
in ARC solvers and discuss broader implications for reasoning
alignment between humans and AI (Sec. 6).

In summary, ARCTraj bridges a gap in the ARC domain by pro-
viding dynamic and interpretable records of human reasoning. It
supports both behavioral studies and the development of cogni-
tively inspired models, serving as a versatile resource for research
on abstraction, planning, and generalization.

2 Related Work
Abstraction and Reasoning Corpus (ARC). ARC [8], also known

as ARC-AGI, is a benchmark designed to test human-like gener-
alization in abstract reasoning tasks. Each task consists of a few
input–output grid pairs, requiring solvers to induce and apply con-
ceptual transformations from limited examples. It has inspired
research across multiple paradigms, including program synthe-
sis [4, 6, 7], neuro-symbolic reasoning [5, 25, 34], and test-time
training [2, 12, 24], many of which were featured in the ARC Prize
2024 Technical Report [9]. However, ARC remains static; it provides
only input–output pairs, offering no insight into the intermediate
reasoning that drives human problem-solving. As a result, most
studies evaluate solution generalization rather than the reasoning
process itself. Understanding this process is crucial for modeling
human-like abstraction. In this work, we use the term ARC to refer
to the 400 training tasks from the ARC-AGI-1 benchmark, which
form the foundation for all trajectories in ARCTraj.

Human Trajectory Datasets for ARC. Several efforts have cap-
tured traces of human reasoning in ARC tasks. LARC [1] collects
natural language explanations, providing semantic insight but lack-
ing action-level detail. Fast and Flexible [16] and H-ARC [22] record
pixel-level edits, while the ARC-Interactive-History-Dataset [32]
logs cell-level actions through the BrainGridGame interface. Al-
though these datasets represent progress, their low-level granularity
and inconsistent coverage make it challenging to extract structured
reasoning or integrate data into learning frameworks. They re-
veal what humans edit, but not how strategic reasoning evolves. A
higher-level, structured view is still missing. These gaps motivate
ARCTraj, which captures object-level, temporally structured tra-
jectories aligned across all ARC tasks to support both analysis and
model training.
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Figure 2: Example of a single trajectory log in ARCTraj. Each action in the “actionSequence” specifies its category and operation,
along with the associated grid and object state, forming a structured state–action unit.

3 ARCTraj Dataset
3.1 Data Collection and Action Structure
Fig. 2 illustrates the trajectory structure in ARCTraj and the com-
ponents of each action. Each log represents one human solving
attempt and contains an ordered sequence of symbolic actions
(actionSequence) recorded through the O2ARC interface [31]. Ev-
ery action is represented as a triplet ⟨category, object, operation⟩
associated with its grid state and timestamp.

In actionSequence, the category denotes the reasoning type
involved (e.g., Selection, Coloring, Object-Oriented, Clipboard, Crit-
ical), and the object indicates a perceptually meaningful region,
contiguous colored cells automatically grouped by the interface
but explicitly confirmed through user selection. This user-driven
segmentation ensures that objects reflect human perceptual group-
ing rather than heuristic clustering. The operation specifies the
action applied to the selected object (e.g., Move, Paint, Flip, or
Copy), forming the decision component of the state–action pair.

These elements define an MDP-compatible format ⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1⟩,
where 𝑠𝑡 encodes the grid configuration and 𝑎𝑡 represents the above
triplet [20]. Formally, the reward 𝑟𝑡 ∈ {1, 0} indicates whether the
current grid 𝑠𝑡 matches the correct output. By preserving order
and object identity, ARCTraj captures evolving reasoning processes
beyond static outcomes, enabling analysis of strategies such as
hypothesis testing, selective attention, and object-level abstraction.

Each log also includes metadata, such as user ID, task ID, and
timestamps, which enables the alignment and cross-user compari-
son of trajectories. ARCTraj links every action to its grid context
and semantic annotations, enabling replay, state comparison, and
the extraction of reasoning sequences for downstream learning.

The dataset contains over 10,000 trajectories across all 400 ARC-
AGI-1 training tasks, contributed by more than 300 participants.
Although the participant count is moderate, each user solved mul-
tiple tasks, producing diverse and deep trajectories that capture
distinct problem-solving styles. This design ensures both breadth
across tasks and depth within each, supporting systematic analysis
of human reasoning. All participants consented to data collection
under an Institutional Review Board (IRB)–approved protocol, and
no personally identifiable information was stored.

3.2 Comparative Dataset Statistics
Among existing human ARC datasets, the most representative one
is H-ARC [22], which also records human solving processes on ARC
tasks. However, the two datasets differ notably in both task coverage
and the representation of actions. H-ARC collected trajectories from
both the training and evaluation splits of ARC-AGI-1 and primarily
logs pixel-level edits, where each action merges pixel selection and
color change.

In contrast, ARCTraj focuses on the 400 training tasks of ARC-
AGI-1 and supports a broader range of object-related operations
(Move, Rotate, Flip, Copy, and Paste). Because these operations
are object-centric, ARCTraj records pixel selection as an explicit
Selection action rather than embedding it within other edits.

For fairness, all comparisons between ARCTraj and H-ARC in
this section are limited to the 400 training tasks of ARC-AGI-1. All
action-related metrics for ARCTraj (e.g., number of actions, ratio
of object-related actions) include Selection steps by default. The
values in parentheses exclude them for equivalence with H-ARC,
which does not distinguish Selection from other actions. This
alignment ensures a consistent basis for measuring abstraction
level and reasoning diversity across the two datasets.
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Table 1: Basic statistics of ARCTraj and H-ARC evaluated
on the 400 training tasks of ARC-AGI-1. Both datasets are
aligned to the same task split for consistent comparison.

Metric ARCTraj H-ARC

Number of tasks 400 400
Number of participants 100 783
Number of trajectories 10,672 7,916
Number of unique visited states 33,608 127,146
Number of actions 208,721 (84,123) 241,697

ARCTraj comprises over 10,000 trajectories generated by about
100 participants who collectively solved the 400 training tasks of
ARC-AGI-1. Although it involved fewer users than H-ARC, each
participant solved multiple tasks, resulting in deeper and more com-
plete reasoning trajectories. As shown in Table 1, ARCTraj records
more trajectories despite fewer participants, indicating richer indi-
vidual exploration and a wider variety of reasoning behaviors.

Because ARCTraj emphasizes object-level actions, it produces
more abstract and efficient trajectories, leading to fewer unique
visited states and fewer total action traces. The total action count
includes Selection steps (208,721), which decreases to 84,123 when
these steps are excluded. Overall, ARCTraj achieves extensive task
coverage while maintaining depth within each task, providing a
dense and diverse record of human problem-solving behavior.

Table 2: Comparative abstraction statistics between ARCTraj
and H-ARC. While both datasets share the same tasks, ARC-
Traj exhibits a broader exploration of reasoning strategies,
a higher proportion of object-related actions, and a greater
ratio of cross-trajectory grids, reflecting stronger object-level
abstraction and consistent intermediate reasoning states.

Metric ARCTraj H-ARC

Avg. participants per task 13.9 11.8
Avg. trajectories per task 25.5 19.8
Ratio of object-related actions 15.2% (37.7%) 0.9%
Ratio of cross-trajectory grids 43.7% 11.4%

Beyond dataset scale, the abstraction level of reasoning behav-
ior differs substantially between ARCTraj and H-ARC (Table 2).
Whereas H-ARC primarily logs low-level pixel edits, ARCTraj
captures semantically meaningful, object-level manipulations that
reduce redundancy and reveal compositional reasoning patterns
aligned with human intuition. These higher-level representations
make trajectories easier to interpret andmodel, providing a stronger
basis for analyzing strategic reasoning and developing models that
emulate human problem-solving behavior.
• Broader participant diversity and strategic coverage. ARC-

Traj includes slightly more participants and trajectories per task
than H-ARC, offering broader coverage of diverse human rea-
soning strategies. This variety captures differences in planning
depth, exploration style, and strategic decision-making across
solvers.

• Higher-level reasoning and abstraction.The large proportion
of object-related actions indicates that ARCTraj captures reason-
ing at a higher semantic level. By emphasizing object-centric
manipulation over pixel-level editing, it produces trajectories
that mirror human conceptual understanding and provide super-
vision for model learning.

• Convergent intermediate states. ARCTraj exhibits a higher
ratio of cross-trajectory grids, suggesting that participants fre-
quently converge on similar intermediate states despite employ-
ing distinct strategies. Such convergence implies shared cognitive
structures and stable reasoning pathways that support analyses
of intention alignment and strategy generalization.
Taken together, these advantages establish ARCTraj as a valuable

resource for research centered on reasoning. Its structured, object-
centric trajectories provide direct supervision signals for models
that learn to imitate or infer human-like reasoning, as explored in
the subsequent analyses and applications.

4 Learning from ARCTraj
4.1 Formalizing ARC Solvers with ARCTraj
To understand how ARCTraj contributes to solving ARC tasks, we
formalize the ARC objective as a few-shot reasoning problem. Each
task provides 𝐾 demonstration pairs:

Ddemo =
{(
𝑥demo
𝑘

, 𝑦demo
𝑘

)}𝐾
𝑘=1 ,

where 𝑥demo
𝑘

and 𝑦demo
𝑘

denote input and output grids illustrating
the transformation pattern. The goal is to predict the output 𝑦test
for a new input 𝑥 test using:

𝑓𝜃 : (Ddemo, 𝑥
test [,A]) ↦→ 𝑦test,

or equivalently,

𝑦test = argmax
𝑦′

𝑃
(
𝑦′ | Ddemo, 𝑥

test [,A]
)
,

where 𝑦′ is a candidate output grid.
Unlike conventional supervised learning, ARC requires solvers

to infer abstract rules from a few examples rather than memoriz-
ing mappings. Thus, 𝑓𝜃 must induce compositional concepts that
explain unseen transformations, framing ARC as a meta-reasoning
problem that demands generalization beyond training examples.

In this formulation, 𝑓𝜃 takes the demonstrations and test input
as inputs, optionally conditioned on auxiliary knowledge A. Here,
A denotes auxiliary knowledge that guides solvers toward human-
like reasoning. A can include external cues such as visual priors,
symbolic hints, or reasoning trajectories, among which ARCTraj
offers a concrete instance capturing human action sequences. While
Ddemo provides static supervision, ARCTraj records intermediate
steps that support compositional learning.

Its information about attention, color usage, and multi-step
strategies offers structured supervision that aligns models with
human reasoning. This auxiliary knowledge enhances interpretabil-
ity and robustness across diverse ARC tasks, defining ARC solving
as conditional reasoning guided by general external knowledge,
with ARCTraj as one realization of it. The next section introduces
specific forms of A, including selection, color, and intention cues
derived from ARCTraj.
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Figure 3: Overview of how ARCTraj analyses inform ARC solving. The ARC solver 𝑓𝜃 predicts 𝑦test given 𝑥 test, demonstration
examples Ddemo, and auxiliary knowledge A derived from human trajectories. ARCTraj provides three structured components
of A, (1) selection biases, (2) color origins, and (3) shared intentions, that capture different stages of human reasoning and can
be integrated into model learning.

4.2 Learning Paradigms with ARCTraj
Fig. 3 illustrates how insights from ARCTraj reshape the learning
perspective of ARC solving. Rather than treating human trajectories
as passive data, ARCTraj reframes them as structured supervision,
revealing how humans perceive, infer, and act across reasoning
stages. The resulting auxiliary knowledge captures three comple-
mentary dimensions of cognition: where attention is directed, what
information is abstracted, and how strategies are organized. These
cues translate human reasoning patterns into actionable signals that
guide model training, offering a new foundation for human-aligned
learning. ARCTraj bridges symbolic reasoning and empirical data,
providing an interpretable scaffold through which models internal-
ize human-like reasoning principles beyond statistical regularities.

Existing ARC solvers, though diverse in design, have yet to fully
incorporate such structured reasoning cues. Reinforcement learning
methods exploit trajectory data for exploration and reward shaping,
but often overlook the semantic structure behind human actions.
Generative models such as diffusion and GFlowNet solvers produce
diverse solutions but lack interpretability grounded in perceptual or
conceptual regularities. Sequential models, including decision trans-
formers and imitation-based systems, reproduce action sequences
without modeling the intentions that guide them. Most current
solvers thus operate at the behavioral level of imitation rather than
the cognitive level of reasoning abstraction, excelling at pattern
reproduction but struggling to adapt when task structures change,
highlighting the need for more cognitively grounded learning.

ARCTraj therefore suggests a shift in learning paradigm: from
replicating task outcomes to modeling the reasoning process itself.
By integrating auxiliary knowledge (e.g., selection biases, color
origins, and shared intentions), future solvers can achieve explain-
able, generalizable reasoning aligned with human cognition. Such
integration enables models not only to improve task accuracy but
also to display interpretable intermediate reasoning that reveals
the rationale behind their transformations. ARCTraj is not merely
a dataset but a framework that connects human cognitive analysis
and machine learning design, paving the way for interpretable,
human-centered ARC solvers.

5 Auxiliary Knowledge from ARCTraj
ARCTraj is not only a corpus of human trajectories but also a
source of auxiliary knowledge about how people reason, explore,
and strategize in solving ARC tasks. This section distills that knowl-
edge to reveal cognitive regularities in visual reasoning and cross-
participant behavior. Using quantitative and qualitative analyses,
we examine how humans focus on relevant regions, infer transfor-
mation rules, and organize multi-step strategies to reach correct
outputs with adaptive flexibility.

To structure this investigation, we frame three research ques-
tions (RQs) that correspond to the main stages of human problem
solving, from perceptual attention to hypothesis formation and
strategic abstraction [14, 29]. Each RQ highlights a distinct aspect
of reasoning behavior, together forming a coherent picture of how
humans decompose, transform, and recombine patterns in ARC task
solving, providing insights that bridge human cognitive processes
and AI reasoning frameworks [10].

RQ 1. Selection Biases: “Where” do humans focus attention
during problem solving? (Sec. 5.1)We analyze spatial and
object-level selection biases to identify which regions humans
interact with most, how the number of objects relates to
trajectory length, and whether attention patterns indicate
perceptual or conceptual salience.

RQ 2. Color Origins: “What” patterns or information do hu-
mans infer when generating new outputs? (Sec. 5.2)
We investigate the origin of colors in human-created test out-
puts to understand how participants infer generative rules
and how these color cues reflect inductive biases relevant to
model design.

RQ 3. Shared Intentions: “How” do humans construct and
generalize multi-step reasoning strategies? (Sec. 5.3)
We examine variations and convergences in solution tra-
jectories across participants to reveal abstracted reasoning
intentions and shared structural pathways, moving beyond
trajectory clustering toward higher-level intention grouping
and convergence analysis.
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5.1 Biases in Human Grid Selections
To address RQ1, we examine whether humans show systematic
selection biases when interacting with ARC grids. In ARCTraj, each
selection action can involve a single pixel, a user-defined region, or
an object-level selection that includes multiple pixels. To unify these
cases, we compute the bounding box for each selection, defined as
the smallest axis-aligned rectangle enclosing all selected pixels. We
then analyze the distributions of bounding box height, width, and
area to describe selection scale and shape across the dataset.
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Figure 4: Distributions of human selection behavior in ARC
tasks. Left: Selections are concentrated in compact shapes
ranging from 1 × 1 to 3 × 3, with square- and bar-shaped
regions dominating. Right: Most selections cover fewer than
20 pixels, reflecting a preference for local and perceptually
salient regions.

As shown in Fig. 4, we observe three main tendencies: (i) selected
areas are mostly small (under 3 × 3), (ii) square-shaped selections
(𝑛×𝑛) dominate, and (iii) bar-shaped selections (𝑛× 1 or 1×𝑚) also
appear frequently. These patterns indicate a consistent preference
for local reasoning and perceptually regular shapes. The left panel
shows the joint distribution of selection height and width, which is
densely concentrated in the 1 × 1 to 3 × 3 range. A diagonal ridge
reflects a square-shape bias, and off-diagonal clusters indicate bar-
shaped regions. The right panel shows the distribution of selected
pixel counts, with most selections involving fewer than 16 pixels.
Peaks near square numbers (1, 4, 9, 16) further confirm humans’
bias toward compact, symmetric regions.

Research Direction 1(a): Temporal Dynamics of Selection
Behavior. Future work could explore how selection size and shape
evolve. Do humans begin with small exploratory selections and later
expand them after identifying transformation patterns, or do they
start globally and then focus on details? Temporal analyses could
reveal how attention shifts during problem solving and inspire
phase-based attention models in AI.

Research Direction 1(b): Perceptual Features and Selection
Probability. Another direction is to test whether perceptual cues
such as color contrast, isolation, or proximity to boundaries affect
selection likelihood. This can be studied through controlled manipu-
lation of grid layouts and saliency. Modeling this relationship could
support predictive attention models and human-AI collaborative
reasoning systems.

5.2 Color Source Attribution in Test Outputs
To address RQ2, we examine the sources of the colors used in the test
output grids and how they relate to human color selection strategies.
Color plays a central role in ARC tasks, yet understanding how
humans choose and transfer colors presents distinct challenges
for trajectory-based analysis. Unlike spatial selections or object
manipulations, color decisions often occur implicitly, revealing how
humans integrate perception and reasoning in non-verbal ways.

An examination of the ARC-AGI-1 training set and its corre-
sponding trajectories reveals that output colors typically originate
from a limited number of sources. Among the 400 training tasks,
266 can be solved using only colors from the test input grid, while
134 require colors drawn from both the test input and the example
output grids. Notably, no task requires colors that appear exclu-
sively in the example inputs, even when considering all possible
sources (test input, example output, and example input). This pat-
tern indicates a deliberate design constraint that restricts potential
color sources to the test inputs and, in some cases, the example
outputs, thereby reducing task ambiguity and simplifying color-
based reasoning. It also implies that color selection is not random
or heuristic, but instead follows consistent patterns shaped by task
structure and perceptual cues.

While ARCTraj does not explicitly record where users obtained
their colors, the observed color-selection patterns closely align
with these potential sources. Participants consistently use colors
from the test inputs or example outputs, even without explicit
color-sampling tools. This suggests that humans implicitly perform
color source attribution when reasoning about transformations,
mentally tracking how colors relate across different grid examples
and maintaining internal mappings between corresponding regions
or objects.

Table 3: Source of colorsets in ARC tasks. In 66.5% of tasks,
required colors appear in the test input grids only. The re-
maining 33.5% require colors from both the test input and
example output grids. No task requires colors exclusive to
the example input.

Source of Colorset # of Tasks %

Test Input Grids Only 266 66.5
+ Example Output Grids (added) 134 33.5
+ Example Input Grids (added) 0 0.0

ResearchDirection 2(a): Trajectory LoggingwithColor Ori-
ginTracking. Future research could introduce trajectory-recording
interfaces that explicitly log color-origin information. By extend-
ing current DSLs with operators such as sample_color(grid, x,
y) or apply_color_transformation(rule), users could directly
sample and apply colors across grids. At the same time, the sys-
tem records their relational origins. This would enable detailed
documentation of how humans establish color correspondences,
producing richer datasets for evaluating model alignment with
human color reasoning. Such interfaces would bridge perceptual
sampling and symbolic reasoning, providing more accurate supervi-
sion for color-based transformations and enabling models to learn
transferable color-reasoning patterns.
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Research Direction 2(b): Generalized Origin Tracking. Be-
yond color, similar origin tracking can be applied to other task
elements. Objects, shapes, spatial configurations, and transforma-
tion rules may also be derived from specific examples within the
ARC tasks. Developing generalized frameworks for origin tracking
would enable the analysis of how humans extract and reuse infor-
mation across examples and tasks. For instance, when constructing
new grid structures, do humans reference example outputs, or
when selecting specific object sizes, are they guided by test inputs?
This multidimensional analysis would deepen our understanding of
cross-example analogical reasoning, revealing how humans anchor
different aspects of the solution process and informing the design
of models that replicate such structured reasoning.

5.3 Shared Intentions and Strategy Patterns
To address RQ3, we analyze how humans construct and generalize
multi-step reasoning strategies when solving ARC tasks. Rather
than comparing entire trajectories, we focus on mid-sequence deci-
sions that reflect shared intentions, specifically choices about which
region to act on and how to transform it. This perspective captures
human reasoning at an intermediate level between low-level oper-
ations and full solution paths, highlighting how solvers plan and
adapt their actions dynamically.

In ARCTraj, each trajectory consists of alternating focus and
transformation steps. A focus action highlights a rectangular grid
region, which may represent a complete object, a fragment, or a per-
ceptually meaningful area. After one or more focus steps, the user
performs a transformation such as moving, coloring, deleting, or
copying the selected region. Human solvers do not always alternate
strictly between focusing and acting; they often explore several
areas sequentially to inspect structures or compare subgoals before
committing to a transformation. For example, a participant might
highlight multiple red squares before recoloring one to match a
blue pattern, reflecting a search-and-align reasoning process.

Table 4: Distribution of selection actions preceding each oper-
ation. Most operations are preceded by one to four selections,
indicating that users tend to engage in short exploratory
phases before executing a concrete transformation.

Length Count % Cum. %

1 23,632 63.7 63.7
2 5,451 14.7 78.4
3 3,343 9.0 87.4
4 1,379 3.7 91.1
.
.
.

.

.

.
.
.
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.
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.

386 1 0.0 100.0

Our analysis shows that 63.7% of operations are preceded by a
single selection, and over 90% occur within four selections (Table 4).
This indicates that humans typically perform a few attentional
shifts before committing to a concrete transformation. The short in-
terval between selections and operations reflects rapid exploratory
reasoning, as humans briefly scan local contexts before making
targeted decisions.

Figure 5: Uniqueness analysis of human reasoning trajecto-
ries. According to the left panel, most ARC tasks show low
unique trajectory ratios, indicating that human solvers often
converge on similar reasoning paths. The right panel shows
a representative low-uniqueness task (Task c0f76784; see Ap-
pendix A), where overlapping solution routes appear in the
state-space graph.

To capture mid-level convergence, we define a shared intention
as a pairing of a selection region and an operation type that recurs
across participants solving the same task. For example, if two users
select a 2 × 2 red square in the lower-left corner and recolor it blue,
this represents a shared intention, even if their subsequent actions
differ. This abstraction identifies agreement on what to act on and
how, without requiring complete trajectory alignment.

To operationalize this, we extract all (selection, operation) pairs
from each trajectory and group them within each task based on
spatial and semantic similarity. This abstracted intention grouping
allows us to measure the degree of strategic convergence or diver-
sity across users. Some tasks exhibit strong convergence, with most
participants performing similar key transformations across compa-
rable grid regions. Others show high diversity, with users selecting
different substructures or applying distinct operations. As shown
in Fig. 5, tasks with low trajectory uniqueness correspond to clearly
structured problems with canonical solutions, while those with
high uniqueness indicate flexible or ambiguous reasoning spaces.

Research Direction 3(a): Strategy Grammar and Reusable
Abstractions. Future work could formalize intention groupings
into a compositional strategy grammar that captures recurring rea-
soning templates across tasks. Such a grammar would represent not
only sequences of human actions but also higher-level dependen-
cies between subgoals and transformations. Identifying common
strategy motifs, such as “color and duplicate” or “fold and align,”
could support interpretable and human-aligned planning models.
This structured view of recurring human strategies may help mod-
els generalize across task categories and explain their reasoning in
symbolic or linguistic form.

Research Direction 3(b): Intention Prediction and Adap-
tive Learning. Another promising direction is to train models
that predict human intention distributions from task features. By
learning how humans allocate attention and plan transformations,
such models could estimate which reasoning paths are likely to suc-
ceed. This could guide curriculum sequencing, scaffold reasoning
from simpler to diverse tasks, and enable adaptive AI tutors that
anticipate user strategies and offer personalized support. These
predictive models could also benchmark AI reasoning diversity,
revealing gaps in adaptability and strategic alignment.

https://o2arc.com/task/c0f76784
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Figure 6: Preprocessing ARCTraj for downstream learning. For RL environments such as ARCLE, ARCTraj is filtered to retain
only operation actions and is mapped to a Markovian state-action format using grid, object, and operation. For sequence
models such as Decision Transformer, only grid and operation are used, omitting intermediate objects and environment
interaction.

6 ARC Solvers using ARCTraj
6.1 Current ARC Solvers and Key Trends
Recent research has explored diverse approaches to solving ARC
tasks by framing visual reasoning and pattern transformation as
learning or generation problems. As shown in Fig. 6, ARCTraj data
are reformatted for downstream learning across solver paradigms.
For reinforcement learning environments such as ARCLE [20], tra-
jectories are mapped to Markovian state–action pairs using grid,
object, and operation. For sequence models such as Decision
Transformer [27], only grid and operation are retained to sim-
plify intermediate interactions while preserving reasoning context.
This unified preprocessing enables direct comparison of solvers
trained on shared human reasoning traces.

Table 5 summarizes representative models categorized by para-
digm, objective, and performance. These approaches show progress
in specific settings but still struggle to generalize reasoning across
unseen tasks. Performance variance suggests that most solvers de-
pend on heuristic priors rather than explicit reasoning mechanisms.

Reinforcement learning methods [20, 21] demonstrate online
policy learning but require heavy reward shaping and task-specific
tuning. Generative models [15, 19] improve output diversity but of-
ten rely on statistical associations rather than interpretable abstrac-
tions. Sequential models [18, 27] leverage trajectory supervision to
mimic human reasoning, but show stable yet limited generalization.
Across paradigms, current solvers still focus on reproducing task
outcomes rather than modeling reasoning processes, motivating the
use of auxiliary knowledge from ARCTraj as structured cognitive
supervision beyond behavioral imitation.

6.2 Role of ARCTraj in Solver Performance
ARCTraj contributes to ARC solving by offering auxiliary knowl-
edge that complements traditional training data. It provides explicit
information about human reasoning, including selection biases, color
origins, and shared intentions, which can guide model learning. Inte-
grating these cues helps reduce ambiguity, improve interpretability,
and promote generalization across diverse tasks. In practice, ARC-
Traj acts as an additional supervision channel that steers learning
toward human-like reasoning patterns rather than outcome opti-
mization.

Empirical comparisons show that incorporating ARCTraj signals
improves both accuracy and trajectory stability. For instance, Deci-
sion Transformers trained with intention cues gain 6–8 points over
demonstration-only baselines. GFlowNet models augmented with
selection priors produce trajectories with 14% higher diversity and
broader coverage of valid transformations. Diffusion-based solvers
integrating intermediate human states achieve more consistent re-
construction of multi-step transformations. These results indicate
that ARCTraj enhances not only outcome quality but also alignment
of internal reasoning with human strategies. Such improvements
also enable interpretable evaluation of how models form and revise
intermediate hypotheses during task solving.

Despite these gains, ARCTraj remains underutilized.Most solvers
use trajectory data as auxiliary demonstrations rather than struc-
tured reasoning supervision. Further work is needed to formalize
how ARCTraj-derived cues interact with solver architectures and
to establish principled methods for reasoning-level transfer.
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Table 5: Summary of representative algorithms, categories, and key findings on ARC-related tasks.

Algorithm / Model Category Goal Performance Key Findings

PPO [20] Reinforcement Learning Solve 55–70% Demonstrated online training in ARC-like MDPs.
World Model [21] Reinforcement Learning Solve 38–100% Enabled analogical generalization via latent dynamics.
Decision Transformer [18, 27] Sequential Modeling Solve 59–90% Learned trajectory-conditioned policies with inferred intentions.
Diffusion [19] Generative Modeling Solve 77–92% Generated intermediate states for plan synthesis.
GFlowNet [15] Generative Modeling Augment 10–100% Sampled diverse goal-directed solution trajectories.

6.3 Limitations and Research Gaps
While the models summarized above demonstrate progress, none
achieve human-level reasoning on unseen ARC tasks. The primary
limitation is that ARC itself remains an open challenge, requiring
compositional generalization and analogical abstraction beyond
current learning paradigms. Most solvers excel at replicating visible
transformations but fail to infer implicit rules or relational depen-
dencies. Moreover, trajectory-based methods have only recently
emerged, partly due to the late release of ARCTraj and limited
awareness within the research community. Tooling and bench-
marks for trajectory-based reasoning are also in early stages, mak-
ing systematic evaluation difficult. Addressing these issues will be
essential for advancing toward genuine reasoning-based solutions.

6.4 Toward Generalizable ARC Solvers
ARC is inherently challenging because it requires flexible, concept-
driven reasoning rather than memorizing patterns. ARCTraj pro-
vides a foundation for addressing this challenge by capturing struc-
tured human problem-solving behavior. Its pipeline, action abstrac-
tion, andMDP formulation are transferable to other domains requir-
ing symbolic reasoning and multi-step planning, such as program
synthesis, robotic manipulation, and spreadsheet automation. By
viewing ARCTraj not as a static dataset but as a generalizable
methodology, future solvers can move toward learning frameworks
that model how humans perceive, infer, and act. This perspective
establishes ARCTraj as a bridge between cognitive analysis and
machine reasoning, supporting the development of interpretable
and adaptable AI systems.

7 Reproducibility
We release ARCTraj and accompanying resources to promote trans-
parency and reproducibility in human-like reasoning research. The
dataset contains over 10,000 human reasoning trajectories collected
through the O2ARC platform and structured for compatibility with
MDP-based learning. All data are fully anonymized and publicly
accessible through the following repositories:

• Dataset: https://huggingface.co/datasets/SejinKimm/ARCTraj
• Interactive Viewer: https://arc-traj-viewer.vercel.app
• Data Collection Platform: https://o2arc.com

The O2ARC interface is not open-sourced due to dependency
and security constraints, but it provides public access for data col-
lection and analysis. Notably, the platform features a trajectory
recording function that enables users to record and download their
own reasoning traces, allowing for further community-driven data
collection without exposing the internal backend code.

We also provide open-source implementations of six research
projects listed in Table 5, covering reinforcement learning, diffusion
modeling, sequential reasoning, and intention inference paradigms:

• [20]: https://github.com/GIST-DSLab/PPO_Solve
• [21]: https://github.com/GIST-DSLab/Dreamerv3onARCLE
• [18]: https://github.com/GIST-DSLab/IntentionLearning
• [27]: https://github.com/GIST-DSLab/ARC_DT
• [19]: https://github.com/GIST-DSLab/LDCQ
• [15]: https://github.com/GIST-DSLab/GFN_to_ARC

These repositories include complete training code, preprocess-
ing scripts, and evaluation pipelines, ensuring reproducibility of
experiments and facilitating future research built upon ARCTraj.

8 Conclusion
ARCTraj captures an extensive collection of human trajectories
on ARC tasks, providing fine-grained, step-by-step records of how
people engage with abstract visual reasoning problems. Unlike
conventional datasets that include only static input–output pairs,
ARCTraj logs temporally ordered, object-level actions grounded in
perceptual and symbolic understanding. This structure provides
direct access to intermediate reasoning processes, enabling the
detailed modeling of how humans plan, adapt, and transform rep-
resentations across problem-solving stages.

These structured trajectories have proven useful across multiple
learning paradigms. They enable reinforcement learning agents
to be trained from human demonstrations, guide generative plan-
ners through trajectory-based augmentation, and support intention-
aware models that infer latent subgoals. The dataset integrates nat-
urally with diverse architectures, including PPO, diffusion models,
GFlowNets, and decision transformers, demonstrating its flexibility
across imitation- and reasoning-centered research.

Beyond model training, ARCTraj facilitates empirical analysis
of cognitive behavior in abstract reasoning. ARCTraj reveals con-
sistent regularities in attentional selection, color attribution, and
strategy convergence, offering evidence of how people decompose
complex transformations into subgoals. These observations bridge
cognitive science and AI, providing concrete priors for inductive
bias design and evaluation protocols aligned with humans.

Finally, ARCTraj represents more than a dataset; it serves as a
methodological framework for linking human reasoning and ma-
chine learning. Its data collection pipeline, trajectory formalism,
and MDP transformation can generalize to domains such as pro-
gram synthesis, robotic manipulation, and real-world planning.
Future work will extend ARCTraj toward larger-scale trajectory
collection and adaptive reasoning models that generalize across
unseen cognitive tasks.

https://huggingface.co/datasets/SejinKimm/ARCTraj
https://arc-traj-viewer.vercel.app
https://o2arc.com
https://github.com/GIST-DSLab/PPO_Solve
https://github.com/GIST-DSLab/Dreamerv3onARCLE
https://github.com/GIST-DSLab/IntentionLearning
https://github.com/GIST-DSLab/ARC_DT
https://github.com/GIST-DSLab/LDCQ
https://github.com/GIST-DSLab/GFN_to_ARC
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A Examples of ARC Tasks and Reasoning
The Abstraction and Reasoning Corpus (ARC) [8] evaluates abstract
reasoning through grid-based transformations. Each task provides a
few demonstrations from which a solver must infer an implicit rule
and apply it to a test input. Solving requires recognizing structural
patterns and generalizing from minimal examples without explicit
instructions, serving as a benchmark for testing whether models
can discover and apply abstract rules from limited evidence.

We illustrate two tasks that highlight distinct reasoning types.
Task c0f76784 involves detecting hollow squares and coloring them
according to size, reflecting compositional reasoning that combines
shape recognition and attribute-based color assignment, showing
how ARCTraj captures both discrete and abstract reasoning sym-
bolically. Task 23b5c85d requires identifying rectangles in the input
grid and cropping the one with the smallest area, emphasizing
spatial comparison and selection reasoning.

Figure 7: Representative ARC tasks used in ARCTraj.
Task c0f76784 (left) involves filling hollow squares with color
according to their size. Task 23b5c85d (right) requires select-
ing the smallest rectangular object and cropping it from the
grid. These tasks illustrate selection-based and compositional
reasoning captured by ARCTraj trajectories.

https://da-fr.github.io/arc-prize-2024
https://da-fr.github.io/arc-prize-2024
https://github.com/iliao2345/CompressARC
https://braingridgame.com
https://o2arc.com/task/c0f76784
https://o2arc.com/task/23b5c85d
https://o2arc.com/task/c0f76784
https://o2arc.com/task/23b5c85d
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B ARCTraj Schema and Operation Categories
Each ARCTraj trajectory is stored as a JSON object describing grid
operations. Each record logs the category, operation type, coordi-
nates, and local grid snapshot for interpretable reconstruction of
human reasoning. This compact representation abstracts user inter-
actions into a structured format for analysis and reasoning. Listing 1
shows an example of a single recorded action in this schema.

Listing 1: Example JSON data from the “actionSequence” col-
umn of ARCTraj, logging the operation type, position, grid
state, and selected object. (Field names ‘x,y’ are data keys.)
{

"category": "Selection",
"operation": "SelectCell",
"position": {

"x": 7,
"y": 9

},
"grid": [

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0],
[0,0,1,1,1,1,1,1,0,4,4,4,4,4,4,4,4,0],
[0,0,1,1,1,1,1,1,0,4,4,4,4,4,4,4,4,0],
[0,0,1,1,1,1,1,1,0,4,4,4,4,4,4,4,4,0],
[0,0,1,1,1,1,1,1,0,4,4,4,4,4,4,4,4,0],
[0,0,1,1,1,1,1,1,0,4,4,4,4,4,4,4,4,0],
[0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,0],
[0,0,0,0,0,0,0,6,6,6,4,4,4,4,4,4,4,0],
[0,0,0,0,0,0,0,6,6,6,4,4,4,4,4,4,4,0],
[0,0,0,0,0,0,0,6,6,6,4,4,4,4,4,4,4,0],
[0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,0],
[0,0,3,3,3,3,3,0,0,4,4,4,4,4,4,4,4,0],
[0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0],
[0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0],
[0,0,3,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

],
"object": [

{
"x": 7,
"y": 9,
"color": 6

}
],
"overlapped": true,
"timestamp": "2024 -02 -15 T01 :07:40.537Z"

}

Table 6 summarizes the symbolic operation categories identi-
fied in ARCTraj and their representative operation types. These
categories organize low-level interface actions into higher-level ab-
stractions that describe how humans manipulate and reason about
grid transformations.

Table 6: Summary of operation categories and representative
operation types in ARCTraj. Each category groups related
symbolic actions extracted from user trajectories.

Category Operations

Selection SelectCell, SelectGrid, SelectObject
Coloring Paint
Critical ResizeGrid, Submit
O2 Flip, Move, Rotate
History Redo, Undo
Clipboard Copy, Paste

C Analytic Extensions of ARCTraj
We formalize three analytic modules introduced in the main paper,
Selection Bias (Sec. 5.1), Color Origins (Sec. 5.2), and Shared Intentions
(Sec. 5.3), which quantify how human reasoning trajectories reflect
exploration, perceptual grounding, and convergent strategies in
ARC task solving. Each analysis translates behavioral regularities
into measurable variables for systematic comparison across tasks.

C.1 Selection Bias in Exploration
Human solvers do not always follow goal-directed attention; they
often begin by exploring uncertain or salient regions before identify-
ing the correct transformation. This exploratory phase shows how
people generate and refine hypotheses, reflecting the balance be-
tween perceptual search and goal-oriented reasoning in ARC tasks.
To quantify this tendency, we measure how attention diverges from
solution-relevant regions.

We define a spatial bias metric comparing the empirical selection
distribution 𝑝sel (𝑖, 𝑗) from ARCTraj and the object-region distribu-
tion 𝑝obj (𝑖, 𝑗):

Bias = KL
(
𝑝sel ∥ 𝑝obj

)
,

where KL denotes the Kullback–Leibler divergence. A higher bias
indicates dispersed, exploratory selections that deviate from rele-
vant regions, while a lower bias reflects focused attention aligned
with solution objects. Tracking bias over time also shows how
exploration narrows as solvers converge on the rule.

The bias decomposes into two components: (i) dispersion, how
widely selections spread across the grid, and (ii) misalignment, how
often attention targets irrelevant areas. The first reflects perceptual
uncertainty, the second conceptual exploration. These distinguish
tasks that cause visual confusion from those that require abstract
reasoning. Dispersion can be measured by spatial entropy, and the
overlap ratio quantifies the degree of misalignment.

Selection also evolves over time. Let each selection at time 𝑡 be
𝑆𝑡 = (𝑖𝑡 , 𝑗𝑡 ,𝑤𝑡 , ℎ𝑡 ), producing a selection sequenceS = {𝑆1, . . . , 𝑆𝑇 }.
A latent-phase model,

𝑃 (phase𝑡 | S1:𝑡−1), where phase𝑡 ∈ {explore, exploit},

captures transitions between exploratory and exploitative reason-
ing. Early exploration shows high-entropy selections scattered
across the grid, while later exploitation yields localized, repeti-
tive selections. Entropy decay in S provides a quantitative signal
of reasoning convergence, aligning with decreasing spatial bias.

These analyses apply directly to few-shot solvers 𝑓𝜃 . Bias mea-
sures can serve as auxiliary supervision, guiding the solver to refine
attention or reasoning schedules. Regularizing attention maps to
penalize dispersion or reward phase-consistent focus allows 𝑓𝜃 to
emulate human exploratory balance. In observed tasks, ambigu-
ous or repetitive structures show higher mean bias and inter-user
variance, consistent with uncertainty-driven exploration.

Together, the spatial and temporal selection patterns define aux-
iliary knowledge

Aselection =
{
𝑝sel (𝑖, 𝑗), Bias(𝑝sel, 𝑝obj), 𝑃 (phase𝑡 | S1:𝑡−1)

}
,

which provides spatial and temporal priors for 𝑓𝜃 .
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(a) Cdemo,I
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(b) Cdemo,O
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(c) Ctest,I
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(d) Cunion

Figure 8: Distribution of trajectory ratios across 400 ARC tasks, showing discrepancies between theoretical color requirements
and actual human usage. Each subplot displays the proportion of trajectories using colors from a specific source (Cdemo,I,
Cdemo,O, Ctest,I, Cunion), with the vertical line marking how many tasks require that source. In Cdemo,I, example input colors
are often underused despite being theoretically needed, whereas Cdemo,O reveals frequent overuse of demonstration output
colors. Ctest,I aligns closely with task requirements, suggesting a human bias toward test inputs. Cunion confirms that all tasks
are solvable using only in-task colors, consistent with ARC’s constrained design. These trends highlight inductive biases that
extend beyond the availability of colors, motivating the explicit modeling of color origins.

C.2 Color Abstraction and Origin Analysis
Human solvers often reuse or reinterpret colors beyond those
shown in demonstrations. Their color choices reveal how people
abstract visual features and infer symbolic relations across grid
regions. Analyzing these behaviors provides auxiliary knowledge
A that helps solvers generalize color reasoning across tasks.

We formalize color provenance through four candidate sources:
colors from example inputs Cdemo,I, example outputs Cdemo,O, test
inputs Ctest,I, and their union Cunion. Each paint action is repre-
sented as 𝑎𝑡 = (paint, 𝑐𝑡 , 𝑆𝑡 ) where 𝑐𝑡 ∈ {0, . . . , 9} is the target
color and 𝑆𝑡 = (𝑖𝑡 , 𝑗𝑡 ,𝑤𝑡 , ℎ𝑡 ) the selected region. A source function

src(𝑐𝑡 ) ∈ {Cdemo,I, Cdemo,O, Ctest,I}

maps each color to its probable origin, yielding a conditional model

𝑃
(
src(𝑐𝑡 ) | Ddemo, 𝑥

test,A
)
,

where contextual features include local color frequencies and spatial
proximity to colored regions. This captures how solvers associate
new colors with known references, forming a probabilistic model
of color transfer.

Beyond literal provenance, humans generalize colors by semantic
function. We define an abstraction mapping

𝜓 : 𝑆𝑡 → abstract color role,

where𝜓 groups regions into roles such as “object,” “background,”
or “mirror fill.” Learning𝜓 through clustering or manual labeling
provides a structured bridge from perceptual to symbolic reasoning,
extending color inference beyond visual matching.

Together, provenance estimation and functional abstraction de-
fine auxiliary knowledge

Acolor = {src(𝑐𝑡 ),𝜓 (𝑆𝑡 )}.

The resulting conditional model for color prediction is

𝑃
(
𝑐𝑡 | Ddemo, 𝑥

test,Acolor
)
,

which provides perceptual and semantic priors for 𝑓𝜃 . Tasks with
low color-entropy distributions typically involve perceptually grounded
transformations, whereas higher entropy reflects symbolic reinter-
pretation and conceptual generalization.

C.3 Shared Intentions Across Participants
Human solvers often reach similar intermediate goals despite taking
different actions. These shared intentions are recurring combina-
tions of spatial selections and symbolic operations that serve as
reusable reasoning units. They form mid-level structures that link
local perception with global task goals, demonstrating how people
reuse procedural knowledge across tasks.

Each intention is defined as a pair 𝐼𝑡 = (𝑆𝑡 , op𝑡 ), where 𝑆𝑡 is the
selected region and op𝑡 the applied operation (e.g., Paint, Move).
Given two trajectories I𝑎 and I𝑏 , their similarity is

Sim(I𝑎,I𝑏 ) =
|𝐼𝑎 ∩ 𝐼𝑏 |
|𝐼𝑎 ∪ 𝐼𝑏 |

,

where each 𝐼 denotes a unique (𝑆, op) pair normalized for scale and
rotation. Higher similarity indicates that different solvers rediscover
similar task decompositions.

Aggregating trajectory similarities yields a population matrix
identifying frequent intention clusters. Each cluster corresponds
to a reasoning template such as “select–paint,” “copy–align,” or
“mirror–extend.” These clusters represent procedural patterns that
recur across tasks, showing that human reasoning reuses a limited
set of compositional motifs. Formally,

M = {𝑀𝑘 }𝐾𝑘=1, 𝑀𝑘 = {(𝑆𝑡 , op𝑡 ) | (𝑆𝑡 , op𝑡 ) ∈ cluster 𝑘}.

The number of clusters 𝐾 depends on task diversity but remains
small relative to all trajectories, suggesting that reasoning relies on
modular reuse rather than random exploration.

Shared-intention clusters provide interpretable priors for con-
structing compositional reasoning in few-shot solvers 𝑓𝜃 . Aligning
solver states with human-derived prototypes offers structured guid-
ance on how to apply operations within a trajectory.

Empirically, tasks with high inter-user similarity show faster con-
vergence and lower selection entropy, reflecting alignment around
stable subgoals. Tasks with low similarity involve ambiguous or
compositional transformations, where solvers follow diverse yet
coherent subgoals. These findings show that shared intentions link
perception-driven exploration with symbolic planning, forming
auxiliary knowledge Aintention =M that contributes to the overall
reasoning prior A used by 𝑓𝜃 .
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Figure 9: State transition in ARCLE [20]: the agent observes the current grid and applies a symbolic editing action to update it.
This process models ARC as a Markov decision problem, where the agent sequentially edits the grid to reach a correct solution.

D Use of ARCTraj in Learning-Based Solvers
D.1 ARCLE and RL Framework
ARCLE [20] formulates the ARC challenge as a reinforcement learn-
ing (RL) problem, where the output grid acts as the environment and
symbolic editing operations define the discrete action space. This
framing enables end-to-end learning of sequential decision-making
policies directly over symbolic grid transformations.

A key difficulty is the sparsity of rewards: the agent receives a
reward only when producing an entirely correct final output. Such
sparse signals hinder standard RL training, as most trajectories yield
no reward. To alleviate this, ARCLE leverages ARCTraj’s structured
human demonstrations for behavior cloning, which guides the
policy toward promising regions of the ample search space.

ARCLE uses ARCTraj’s actionSequence to learn a mapping
from states to expert actions, and then fine-tunes the policy with
PPO to generalize beyond demonstrations and handle unseen states.
Follow-up work [21] integrates DreamerV3 with ARCTraj-based
initialization, further improving sample efficiency and planning.

Fig. 9 illustrates ARCLE’s state–action transitions within anMDP
framework. The agent observes grid states and selects symbolic
edits that move the grid toward the target solution. Empirical re-
sults show that ARCTraj-based imitation substantially accelerates
convergence and stabilizes training compared to pure online RL.

ARCLE also uses ARCTraj to train a World Model that predicts
future states and actions in a latent space. This model captures
temporal structure, supports multi-step planning, and improves
task generalization, further linking human problem-solving with
autonomous ARC agent learning.

D.2 World Model Training with ARCTraj Data
Building on the RL framework, ARCLE incorporates a DreamerV3-
based World Model [13] to learn compact latent representations
of ARC tasks from the richly annotated ARCTraj data. This latent
modeling improves planning and policy learning by mapping high-
dimensional grid and symbolic action states into a continuous,
lower-dimensional space that preserves essential task features.

The architecture comprises encoder–decoder pairs for grid states
and symbolic actions, a recurrent hidden state ℎ𝑡 that models tem-
poral dependencies, and a reconstruction-based objective. Training
on ARCTraj’s structured trajectories enables the model to predict
future latent states and actions, supporting lookahead reasoning
and more informed decision-making.

Figure 10: The DreamerV3-basedWorld Model [21] is trained
on ARCTraj using an encoder–decoder architecture that em-
beds grid states and symbolic operations into latent variables
𝑧𝑡 . A recurrent state ℎ𝑡 captures temporal dependencies be-
tween latents and actions 𝑎𝑡 . Minimizing reconstruction loss
enables accurate recovery of states and operations. Using
ARCTraj’s rich trajectories, the model predicts future states
and actions in a compact latent space, improving planning,
sample efficiency, and generalization on ARC tasks.

Fig. 10 illustrates the overall structure. Grid and action states are
encoded into latent variables 𝑧𝑡 , providing compact summaries of
visual configurations and symbolic transformations. The recurrent
state ℎ𝑡 aggregates temporal information, enabling the model to
track multi-step dependencies. Decoders reconstruct the original
states from the latents, and the training loss encourages accurate
prediction of grid transitions and action effects. This design models
both spatial and temporal structure, supporting latent rollouts that
align with trajectories observed in ARCTraj.

Leveraging ARCTraj’s detailed symbolic trajectories enables the
World Model to capture meaningful environmental dynamics and
action semantics specific to ARC tasks. This latent dynamics model-
ing improves sample efficiency by enabling planning in a compact
space rather than the whole grid. Empirical results demonstrate that
ARCTraj-trained World Models enhance policy learning, accelerate
convergence, and improve generalization on unseen ARC tasks.
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Figure 11: LDCQ trains an autoencoder on ARCTraj’s symbolic action sequences to learn a continuous latent space for discrete
operations [19]. The encoder embeds action trajectories into latent representations, and the decoder reconstructs actions from
them. Constrained Q-learning then optimizes a policy within this latent space, using rewards to guide exploration and ensure
valid solutions. This continuous space enables smoother diffusion-based sampling, thereby reducing the challenges associated
with large discrete action spaces. Grounding the latent space in human trajectories from ARCTraj further improves sample
efficiency and solution quality.

D.3 Diffusion-based Offline RL
LDCQ (Latent Diffusion with Constrained Q-Learning) [19] intro-
duces an approach that integrates latent diffusion models with
constrained Q-learning to address the compositional and multi-step
nature of ARC tasks. Instead of operating directly in a discrete
symbolic action space, where optimization becomes difficult due to
sparsity and discontinuity, LDCQ constructs a continuous latent
action space using an autoencoder trained on ARCTraj’s rich sym-
bolic trajectories. This latent space captures semantic relationships
among symbolic operations, placing functionally similar actions
closer together and enabling smoother transitions during policy
learning. By learning such structure-aware embeddings, the model
gains the ability to reason over symbolic operations more flexibly
and expressively.

With this latent representation, LDCQ employs diffusion-based
generative modeling to explore actions through gradual denoising,
guided by learned score functions. This continuous exploration mit-
igates the combinatorial explosion of discrete operations, enabling
the model to generalize beyond the exact operation sequences ob-
served in the dataset. Moreover, the diffusion process provides a
powerful mechanism for interpolating between symbolic actions,
enabling the policy to propose candidate edits that blend charac-
teristics of multiple operations in a coherent way. Constrained
Q-learning then steers the diffusion sampling toward high-reward
and structurally valid regions of the latent space. The Q-function
incorporates ARC-specific constraints, ensuring that sampled latent
vectors correspond to plausible editing steps and stable interme-
diate grid states, ultimately improving the reliability of predicted
transformations and enhancing overall robustness.

ARCTraj plays a central role in shaping this latent action space.
Human-generated trajectories encode strong inductive biases, such
as local reasoning, symmetry exploitation, and multi-step compo-
sitional edits, that become reflected in the learned embeddings.
Because the latent representations arise from real human strategies,
they naturally encode structural regularities that benefit down-
stream decision-making and help the model understand how sym-
bolic edits are typically sequenced and combined in realistic problem-
solving scenarios. This grounding enables the model to generate
action sequences with meaningful symbolic semantics rather than
arbitrary latent encodings. Also, it helps preserve coherence across
successive edits by providing latent features that implicitly cap-
ture task context. As a result, both policy expressiveness and in-
terpretability are improved, since the generated transformations
more closely resemble the reasoning patterns humans exhibit when
working through multi-step ARC manipulations.

By combining diffusion-based exploration with constraint-aware
Q-learning, LDCQ effectively navigates the ample combinatorial
solution space of ARC. The synergy between a structured latent
action manifold and reward-guided sampling yields policies that
explore more broadly while maintaining alignment with feasible
symbolic reasoning. Empirical results show higher success rates and
faster convergence compared to traditional RL methods, owing to
smoother optimization dynamics and better alignment with human
reasoning patterns in ARCTraj. Overall, LDCQ demonstrates how
integrating continuous generative modeling with human-derived
symbolic data can significantly enhance AI reasoning capabilities in
abstract problem-solving domains, indicating a promising direction
for hybrid symbolic and continuous learning frameworks.
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D.4 GFlowNet-based Trajectory Augmentation
The GFlowNet-based approach [15] frames ARC task solving as
a structured sequence generation problem, where each trajectory
is a series of symbolic editing operations that transform the in-
put grid into the target output. Instead of optimizing for a single
best solution as in traditional reinforcement learning, GFlowNet
learns a generative policy that samples trajectories with probabili-
ties proportional to their rewards. This probabilistic formulation
facilitates the discovery of diverse, high-quality solutions that more
accurately reflect the variety of human problem-solving strategies.

A central challenge is the combinatorial explosion of possible
trajectories, which makes naive exploration infeasible. ARCTraj
alleviates this by supplying human-generated trajectories that act
as high-reward exemplars. These demonstrations guide the model’s
sampling distribution toward promising regions of the solution
space, helping it acquire effective policies more efficiently.

Training incorporates these augmented trajectories into a flow
matching objective that balances exploration and exploitation, en-
abling GFlowNet to represent multiple modes in the solution space.
Leveraging ARCTraj reduces the likelihood of the model collaps-
ing into narrow local optima and helps it capture the underlying
structure of ARC tasks. This leads to improved sample efficiency,
robustness, and more plausible solutions than those generated by
standard RL agents.

Figure 12: Overview of the GFlowNet-based ARC solver
that leverages ARCTraj’s human trajectories as reward-
supporting paths [15]. The model generates symbolic editing
sequences with probabilities proportional to their rewards,
and the human trajectories guide flowmatching toward high-
quality solution paths. This probabilistic training promotes
diverse exploration and efficient learning across ARC’s com-
plex, multi-modal solution landscape.

In summary, incorporating ARCTraj data into GFlowNet training
improves the solver’s ability to navigate the complex solution space,
allowing it to produce diverse and practical strategies. This proba-
bilistic, data-augmented approach enhances learning efficiency and
enables the model to capture the structure and variety inherent in
ARC tasks. Consequently, it represents a promising direction for
developing AI agents with more human-like reasoning and adapt-
ability, capable of tackling challenges that demand creativity and
exploration beyond traditional optimization methods.

D.5 Decision Transformer
Recent work [27] frames ARC task solving as a sequential decision-
making problem and applies Decision Transformers (DTs) to model
user behavior from offline data. DTs treat the task as sequence mod-
eling, predicting the next action conditioned on the current grid
state, past actions, and the expected future returns (return-to-go). By
converting ARCTraj’s symbolic trajectories into (return-to-go,
state, action) triples, DTs learn human problem-solving strate-
gies directly from offline logs. Our work extends this by adding
object-level information, forming (return-to-go, state, action,
object) quadruplets to better capture spatial reasoning.

The DT architecture uses a transformer to model long-range
temporal dependencies in trajectories. Conditioning on return-to-
go guides the model toward trajectories associated with higher
rewards, improving its ability to imitate effective solution patterns
and predict human-aligned next actions.

Decision Transformer

Rt st atR1 s1 a1
⋯

statereturn action
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Rt-1 st-1 at-1R0 s0 a0
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0.0 start

statereturn action
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Figure 13: Decision Transformer-based ARC solver trained
onARCTraj’s symbolic action sequences and return-to-go sig-
nals [27]. The transformer receives sequences of past returns,
states, actions, and optionally object or intention embed-
dings, enabling it to predict next editing operations and repli-
cate human-like reasoning. This offline framework leverages
rich human trajectories to improve policy learning without
costly environment rollouts.

Building on this framework, recent work [18] incorporates high-
level intention embeddings from user logs, forming pentaplet sam-
ples (return-to-go, state, action, object, intention).
This additional conditioning enables the DT to model more abstract
planning behaviors and produce coherent, higher-level action se-
quences that generalize better to unseen ARC tasks.

Together, these approaches demonstrate the effectiveness of
pairing advanced sequence modeling with rich human trajectory
data. The Decision Transformer framework supports scalable of-
fline training, paving the way for interpretable ARC agents that
incorporate cognitive structures, such as intentions and hierarchical
planning in a consistent manner.
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E Exploratory Data Analysis
E.1 Comparison with H-ARC Dataset
We compare ARCTraj with H-ARC [22], a dataset of human editing
sequences on ARC tasks. H-ARC logs pixel-level edits, where each
action merges selection and color change. ARCTraj instead cap-
tures object-level sequences via the O2ARC interface [31], which
separates selection from symbolic operations such as Move, Rotate,
Flip, Copy, and Paste. This object-centric design reveals higher-
level structural intentions that pixel-level logs cannot capture.

Although both datasets target the same tasks, their formats lead
to different strategy patterns: H-ARC reflects pixel-level edits, while
ARCTraj highlights semantic transformations over shapes and re-
lations. These differences influence trajectory length and action
composition in meaningful ways. Sec. 3.2 shows the high-level
comparison, and the following sections extend it with detailed
quantitative measurements for deeper analysis.

E.2 Quantitative Comparison Statistics
Statistics from the Training Sets of both datasets are computed using
the same metrics presented in Table 1 and Table 2. All ARCTraj
values employ the samemethodology to ensure direct comparability.
Beyond the raw counts, we also highlight how each metric relates
to reasoning behavior and the types of cognitive patterns it reveals,
offering additional interpretive depth.

Metric ARCTraj H-ARC

Average participants per task 13.9 11.8
Average trajectories per task 25.5 19.8
Number of trajectories 10,193 7,916
Ratio of object level actions 15.2% (37.7%) 0.9%
Number of actions 208,721 (84,123) 241,697
Number of object level actions 31,710 2,227
Ratio of cross trajectory grids 43.7% 11.4%
Number of cross trajectory grids 14,688 7,834
Number of unique grids 33,608 68,914

Table 7: Extended comparison between ARCTraj and H-ARC.
This table aggregates the statistics underlying Table 1 and
Table 2, providing a compact summary of the EDA results.

Average Participants per Task. ARCTraj records an average of
13.9 unique participants per task, compared to 11.8 in H-ARC. The
slightly higher value indicates broader coverage of per-user tasks.
This is relevant because users who attempt more tasks often ex-
hibit recognizable cross-task reasoning habits, such as repeatedly
applying structural decompositions or symmetry-based strategies
across different problem families.

Average Trajectories per Task. ARCTraj contains 10,193 valid
trajectories for the 400 training tasks (25.5 per task), whereas H-ARC
contains 7,916 trajectories (19.8 per task). Higher trajectory density
in ARCTraj yields more stable estimates of strategy variability
and intermediate-state distributions. It also supports fine-grained
clustering analyses, where trajectory groups can be compared based
on the degree of abstraction they employ.

Number of Trajectories. ARCTraj includes 10,193 trajectories,
compared to 7,916 in H-ARC. This 29% increase expands coverage
of rare reasoning strategies and reduces sensitivity to participant-
specific biases, yielding more representative aggregate patterns.

Ratio of Object-level Actions. Object-level actions are detected
when category is O2 or Clipboard. In ARCTraj, these constitute
31,710 out of 208,721 actions (15.2%) when all selection steps are
included, or 31,710 out of 84,123 (37.7%) when selections are ex-
cluded. In H-ARC, the ratio is 0.9%. This large gap clearly illustrates
how O2ARC enables users to perform conceptual transformations
directly, rather than approximating them through extensive pixel
changes in manual editing.

Number of Actions. Depending on the treatment of selection
steps, ARCTraj trajectories contain 208,721 actions (raw), 137,152
actions (merged selections), or 84,123 actions (operations only).
H-ARC logs 241,697 pixel-level actions. ARCTraj trajectories re-
main shorter even under the least compressed measurement. This
reduction reflects conceptual compression: a single Rotate action
in ARCTraj corresponds to many pixel-level operations in H-ARC.

Number of Object-level Actions. ARCTraj logs 31,710 object-level
edits, while H-ARC logs 2,227. This fourteen-fold difference high-
lights the degree to which ARCTraj captures geometric and rela-
tional patterns that require many operations to express in pixel-
level logs. These higher-level operations provide richer supervision
signals for models aiming to learn structured transformations.

Ratio of Cross-trajectory Grids. ARCTraj contains 14,688 shared
grids out of 33,608 unique states (43.7%), while H-ARC contains
7,834 shared states out of 68,914 (11.4%). The higher convergence
rate in ARCTraj suggests that object-level reasoning guides solvers
toward more consistent intermediate states. This phenomenon is
useful for inferring latent strategy templates and for studying how
humans organize multi-step transformations.

Number of Unique Grids. ARCTraj records 33,608 unique states,
while H-ARC records 68,914. Despite ARCTraj’s larger trajectory
volume, the reduced number of unique states indicates that object-
centric actions compress the state space by focusing on structurally
meaningful transitions. This compression is advantageous for down-
stream modeling because it reduces spurious variability.

E.3 Key Observations
The extended statistics reinforce the differences outlined in Sec-
tion 3.2. H-ARC is suited for pixel-level analysis, whereas ARCTraj
more directly captures high-level conceptual transformations en-
abled by object-centric operations. ARCTraj exhibits higher trajec-
tory density, significantly larger ratios of object-level actions (15.2
to 37.7%), and shorter action sequences, indicating that users rely
on compact symbolic edits rather than long pixel-level chains.

ARCTraj also shows stronger cross-trajectory convergence (43.7%
versus 11.4%), suggesting that solvers frequently reach similar inter-
mediate configurations despite varying edit paths. This consistency
highlights recurrent transformation patterns and stable subgoals,
providing useful supervision signals for modeling human-like rea-
soning. A consolidated summary of these numerical results is pre-
sented in Table 7, offering a clear overview of the overall trends.
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